


Java for C+ +

Programmers

Randy Nelson

ior Curriculum Designer

Sen



Java for C+ + Programmers

* Audience:

— Object programmers with experience
in C and/or C++

* Objectives:
— Read simple Java source files

— Identify elements found in C and C+ +,
how they are the same and how they differ

— Identify elements unique to Java



Javals...

* Simple, Fully Specified, Portable
* It’s like:

— C with objects

— Smalltalk with types

— C+ + without guns and knives




Java Language Elements

* Object-oriented
- ~ *Dynamic
* Rooted
* Typed
* Language support for:
— Security
— Threads
— Exceptions
— Native code




Differences from C

* Objects

* No preprocessor
* No globals

* No pointers




+ _ Differences from C+ +

| * Library-centric

- ~ * No operator overloading
* No multiple inheritance
* No deallocation




Java Virtual Machine

* Java code is written for an abstract virtual
machine

* Java code is compiled into bytecode

— The bytecode is the machine code for
the virtual machine

— This platform independent bytecode
is interpreted at run-time by the Java
implementation for each platform



Libraries

* Java is a rooted object-oriented language

— It defines its own root object — Object —
and object hierarchy

— It relies on certain libraries to be present

* Java libraries are provided in packages
— java.applet




Java Packages

* Base Java packages include:
— java.lang — default base classes
— java.applet — browser apps
— java.awt — portable GUI
— java.awt.image — graphics
— java.io — input/output
— java.net — networking
— java.util — utility classes




Namespaces and Packages

* Java uses hierarchical package names that
provide unique namespaces

— By convention, a package name begins with
the reverse of the enterprise’s Internet
domain name

— Additional fields are determined by site
and programmer

— It ends with the name of the class
— Fields are separated by periods



Package Statement

* A package statement indicates which
package the code in a source file is part of

* A package statement uses the package
keyword
— package COM.apple.qt;

— The package statement must be the first
thing in the file

* If there is no package specified, the
code is made part of the default
unnamed package




Importing

* An import statement provides shorthand
for using package names in source code

* Import statements use the import keyword

— Importing a package name allows you to
reference the names contained in the
package without the including the entire
package path

* It simply saves typing




Importing the Date Class

Without 1mport

java.util.Date currentDate =

new java.util.Date():

With import

import java.util.Date

Date currentDate = new Date():




Java Code

* Java code is contained within a class
definition

— Classes can contain class and instance
variables and class and instance methods

— These are collectively known as the class’
members

* There are no global variables or functions



HelloWorld in Java

A simple class definition
class HelloWorld {

public static veoid main(String[] args)

{
System.out.println("Hellco World!"):




Java Data Types

* Primitive—non-object values

— boolean, char, short, int, long, float, double
* Reference—class as type

— Objects—refer to instances of a class

* Date, Converter

— Arrays—refer to ordered collections of the
same class or primitive type

* Date[], int[]



UNICODE

* Characters, strings and language
identifiers are made up of 16-bit
UNICODE characters

— The first 256 UNICODE characters are
the same as ASCII characters

* UNICODE characters can be represented
by the following escape sequence:
\unnnn where nnnn is a sequence of
four hex digits




Declarations

* Declarations can only appear within a
class definition

— Local variables can be declared anywhere
in a method

* Types are class names and primitives,
identifiers are UNICODE strings

* Forward reference to undeclared
members is allowed

* There is no prototyping



Creating an Instance

* Objects are instantiated using the operator
new with a class name

— new invokes the class’ constructor
* Each variable must be explicitly initialized

— A declaration only creates the variable to
hold the reference to the object

— References initially point at null




Strings

* Strings are represented by the String class:
java.lang.String
— They are not expressed as arrays of char

— They are immutable: use StringBuffer for
mutable strings

* Methods are provided that parallel those
found in the C string library




Literals

* String literals are instances created
directly from entered data

— String objects are normally instantiated
from a string literal: a value between
double quotes

* "Hello World!"

* Numbers and other primitive types are
also entered directly

— 3.14159




Declarations and Instantiations

Declarations

e Converter theConverter:
HelloWorld myGreeter:;

String aGreeting:

Instantiations

theConverter = new Converter():
myGreeter = new HelloWorld():
aGreeting = "Hello World!":;

Date now = new Date():




Classes and Files

* Each class definition is compiled into a
class file

— A file called HelloWorld.java results in
HelloWorld.class

* The file name must match the name of the
primary class defined in it

— The file containing the Converter class must
be named Converterjava




Class Definition

* A class definition starts with the keyword
class followed by the class name

— The class is assumed to inherit from Object

* Variables and methods are defined in
any order

— Class variables and methods are preceded
by the keyword static




Converter Class Definition

class Converter {

static int numberOfConversions:

String name = "Identity":

static void incrementConversions() {
numberOfConversions++;

}

double convert(double inputValue) {
incrementConversions():;

return inputValue:




Extending a Class

* To subclass, follow the class name
with the extends keyword and the
superclass name

— class Subclass extends
Superclass

* In an override, to invoke the overridden
method, use the keyword super as the
object reference

— supermethodName();




Extending Converter

A converter that doubles 1its
input
class Doubler extends Converter {
double convert(double inputValue) {
double result:
result = super.convert(inputValue):

return result * 2;




Accessing Variables

* Variables are accessed using an object
reference, followed by a period, followed
by the variable name

* reference.variableName

— Instance variable are accessed using
instance references

— Class variables can be accessed using the
class name or an instance reference




Invoking Methods

* Methods can be invoked by using an
object reference, followed by a period,
followed by the method name

* reference.methodNamey)

— Instance methods are invoked using
instance references

— Class methods can be invoked using the
class name or an instance reference




Using Converter

Accessling a class variliable

Converter.numberOfConversions:

Accessling an 1lnstance
varilable

theConverter.name:;

Invoking a class method

Converter.incrementConversions():

Invoking an i1nstance method

theConverter.convert (100);



Referring to the Receiver

* The instance that was invoked can be
referred to within the method as this

— An instances’ variables and methods are
implicitly referenced via this if they do not
have an explicit reference

* The following are equivalent:

— memberName
— this.memberName




Method Overloading

* Multiple methods with the same name and
different number or type of parameters
can be defined

— The system will choose the appropriate
implementation at run-time based on
the arguments

— Return type must remain the same
* Language operators cannot be redefined




Overloading convert
Expects a double

double convert(double doublelIn)...

Expects an ilnteger

double convert{(int intIn)...

Expects an integer array

double convert(int[] intArrayIn)...

Expects and integer and a
double

double convert(int i, double d)...




Constructors

* A constructor is special type of method
that initializes a new instance

— A constructor has the same name as
the class

* Classname()...
— Constructors do not indicate a return type

* A default constructor is created
automatically for every class



Multiple Constructors

* It is typical to have several different
constructors, each of which takes
different arguments

* From within a constructor, use this() to
invoke another constructor from the same
class, use super() to invoke a superclass’
constructor




Using Multiple Constructors

class Multi extends Single {

int size;

String name;

Multi(int size) {
super(size):
this.size = size;

}

Multi(int size, String name) {
this(size):;

this.name = name:;




Constants

* Constants can be defined by preceding a
variable declaration with the keyword final

— A final variable cannot be changed

— Constants are typically also declared static

* final static int A = 1;
* final static int Z = 20;




Argument Passing

* Arguments to methods are passed by value

* Passing a reference type by value is
somewhat like passing a pointer type
by value

— The members of the referenced object can
be modified in the receiving method

— The object itself cannot be replaced




Protection and Access

* Access to objects and members of a class
is controlled

— An object’s members can be:

* public—visible to all other objects
* Visible within the current package
* protected—visible to subclasses

* private—only visible within the
object itself



Garbage Collection

* The system takes care of deallocation
— There is no deallocate or free method

* Objects are automatically garbage
collected when there are no more
references pointing to them

— Java does not define the garbage
collection technique




Operators

* Operator precedence is similar to that
of Cor C++

* Java adds some new operators
— + —string concatenation

— instanceof—checks if the value is an
instance of particular class or interface

z*‘ * C’s ¥ &, and sizeof operators do not exist



Flow Control

* if statements can only test booleans
* switch statements must use ints

* Labelled break and continue statements
allow branching to specific locations in
the code

* for statements allow loop variables to be
declared within the initialization block




1

k3
b4

i

¢

g
i

gﬁ: G

Exception Handling

* Java provides exception handling for
errors using try—catch—finally

— Code to be executed is found in the
try block

— Code to provide remedies for errors in
the try block follows in the catch block

— Code to be executed in any case is in

the finally block



Simple Output

* System.out. println provides the ability to
write to the standard output

* Use string concatenation to create
your output

— String concatenation will automatically
convert many types

* String pi;
*pi ="pi =" + 3.14159;
* System.out.println(pi);




Dynamic Loading and Binding

* Java classes are loaded as they are needed

* Method names are bound to their
implementation when they are first called

* Superclasses can change their
implementation without forcing their
subclasses to be recompiled




Abstract and Final Classes

* Abstract classes are classes that act as the
basis for subclassing

— They cannot be instantiated
— Precede the class keyword with the abstract
keyword
* Final classes are essentially sealed
— They cannot be subclassed

— Precede the class keyword with the final
keyword




Interfaces

* Interfaces are a way of sharing method
declarations across multiple classes

— An interface only describes the method
name, parameters and return type

— It has no implementation

* An interface definition uses the interface
keyword
— It contains method prototypes




Interfaces

* Interfaces can be extended using the
extends keyword

* A class indicates the interfaces it
implements with the implements keyword

— It must implement every method
— It can implement multiple interfaces

* An interface can be used as a type




Interfaces

interface Steerable {
void turnLeft():
void turnRight():
void goStraight():
}
class Vehicle implements Steerable {
void turnLeft() { ... }
void turnRight() { ... }
void goStraight() { ... }
}

Steerable car = new Vehicle():




Persistence

* There is no persistence for Java instances

— — Instances are created at run-time from
| class files

— To store state you need to use external files
or databases




Applications

* Java applications are classes that contain
a main method

— main is defined as follows:

— public static void
main(String|] args)

* The array args passed to main contains the

command line arguments that the
application was invoked with

— args[0] is the first argument




Applets

* Applets are subclasses of the class
java.applet. Applet

* Applets take over an area of aweb
browser’s page
— Applets respond to events and draw

* Applets also respond to a set of well
defined lifecycle messages

— init, start, paint, stop, destroy




Threads

* Java has language level support for threads

— Java can manage locks for each instance
and method

— The locks prevents the use of the instance
or method in one thread if another already
has the lock

* The synchronized keyword indicates the
method or object to lock



Security

* Java supports a runtime security manager

— It can check the bytecodes it is provided to
make sure they are valid

— It provides policies to prevent or allow
certain operations based on the source of
the code—local or network—to be run



Native Methods

* Java supports calls to externally
compiled code

— A method with the native keyword acts as a
stub that gets bound to the actual code

— This allows existing code, like Macintosh
toolbox code, to be invoked using Java

* See MR] SDK for examples



References

* Here are some references to use to
continue learning Java
— The Java Tutorial
* http://java.sun.com/tutorial/
— The Java Programming Language
* Arnold, Gosling—Addison-Wesley
— Java in a Nutshell
* Flangan— O'Reilly & Associates







